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Spectral Methods and a Maximum Principle 

By Claudio Canuto* 

Abstract. Various spectral Chebyshev approximations of a model boundary layer prob- 
lem for both a Helmholtz and an advection-diffusion operator are considered. It is as- 
sumed that simultaneously the boundary layer width tends to zero and the resolution 
power of the numerical method tends to infinity. The behavior of the spectral solutions 
in the frequency space and in the physical space is investigated. Error estimates are 
derived. 

0. Introduction. Spectral methods using expansions in eigenfunctions of sin- 
gular Sturm-Liouville operators (such as Chebyshev or Legendre polynomials) have 
been proven successful in the numerical approximation of various boundary value 
problems (see, e.g., [3], [8], [14] and the references therein). 

Among the features of these methods is the possibility of accurately represent- 
ing boundary layers. Such a property is related to the high resolution power of 
the spectral basis functions near the boundary points, since it is there where they 
concentrate most of their extrema (see [8, Section 3]). Using a suitable coordi- 
nate transformation it is even possible to achieve infinite-order accuracy near the 
boundaries [13]. 

In this paper we analyze the behavior of various spectral approximations to the 
following model boundary value problems: 

f-EUXX +YU =O -1 < x< 1, 

t U(-1) = ?, U(1) = 1, 

where E > 0 is a constant and either YU _ U (as a model for a Helmholtz problem) 
or YU = U1 (as a model for an advection-diffusion problem). The spectral solution 
u is a global polynomial of degree N, expanded in terms of Chebyshev polynomials 
and defined by any of the discrete procedures popularly used in spectral methods, 
namely a Galerkin or a tau or a collocation scheme. We shall establish several 
properties of u which hold uniformly with respect to E and N, and we shall derive 
estimates on the error u - U as E -* 0 and N x-* o simultaneously. 

The exact solution U is uniformly bounded between 0 and 1 by the classical 
maximum principle (for complete studies on singular perturbation problems we 
refer, e.g., to [7], [10]). In contrast, the spectral solution is not positive throughout 
the domain if E is so small compared to N-1 that a Gibbs phenomenon occurs 
at x = 1. In other words, the maximum principle in the physical space does not 
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hold for spectral approximations, as indeed is expected for high-order methods. 
However, an interesting conclusion of the present investigation is that a sort of 
"maximum principle" may hold in the frequency space, in the sense that all the 
Chebyshev coefficients of the spectral solution u are strictly positive for all E and 
N. 

The essence of this property is the fact that the Chebyshev coefficients of any 
derivative of u depend linearly upon the Chebyshev coefficients of u via a matrix 
with nonnegative entries. Thus, the positivity of u in the frequency space can be 
proved by showing that u is the exact solution of the equation -6u, + Su = '1, 
where (J is a suitable polynomial of degree N whose Chebyshev coefficients are 
positive. 

Remarkably, the "maximum principle" in the frequency space easily implies the 
uniform boundedness of u in the physical space. Hence, the property pointed out 
in this paper could be invoked to get a priori estimates in the maximum norm in 
more complex problems. Note that all the smoothing operators commonly used 
in order to filter out in the frequency space the spurious oscillations generated by 
sharp gradients and discontinuities (see, e.g., [9], [11]) are sign-preserving in the 
frequency space (i.e., the smoothing factors are nonnegative). Thus, the results 
presented here hold for filtered solutions as well. Their extension to more general 
situations deserves further investigation. 

Our analysis also suggests that as E becomes very small compared to N-', 
spectral approximations of boundary layer problems may exhibit a strong sensitivity 
to the parity of N. For the model problems considered here, u behaves better (in 
terms of the magnitude of oscillations) if it corresponds to an odd N rather than 
to an even N. 

Our results can easily be extended to other spectral bases such as the Legendre 
polynomials. Applications have been made to the numerical analysis of the Kleiser- 
Schumann algorithm for the Stokes problem [5] and the Schwarz alternating method 
for solving elliptic problems in complex geometries [2]. 

1. Notation and Basic Properties of the Chebyshev Orthogonal Sys- 
tem. Throughout the paper, given two integers m and k, we will use the following 
notation: 

(1.1) k :x' m if and only if k - mI is even. 

Conversely, k X m if and only if jk - ml is odd. 
For each integer N > 0, PN will denote the space of real polynomials on the 

real line of degree at most N. PN will denote the subspace of PN of polynomials 
which vanish at x = ?1. 

Each polynomial v E PN can be expanded in terms of Chebyshev polynomials 
of the first kind, Tm (x) = cos mO (if cos 0 = x), as follows: 

N 

(1.2) V = Z VmTm. 
m=O 

Since the Chebyshev polynomials satisfy the orthogonality relation 

1 |cm7 m, (1.3) ]TM(X)Ti(X)&W() 2 c61 
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where w(x) = 1/ /1 - x2 is the Chebyshev weight and 

(1.4) cm{ m=O, 

we have 

V ( 2 (~~m) 1/2 j v(x)Tm(x) w(x) dx. 
iTCm -1 

The Chebyshev expansion of the first derivative vx of v is given by 
N-1 

(1.5) Vx = E iQ9 Tm, 
m=O 

where 

(1.6)v()=- E k. 
cm 

k>m+1 
kzjcm 

Similarly, the expansion of the second derivative is given by 
N-2 

(1.7) VXX= E i)Tm, 
m=O 

where 

(1.8) i42) = 1 k(k2-m2)ik. 
cm 

k>m+2 
kDcm 

We recall that the Chebyshev polynomials satisfy the differential equation 
/ ~~~~2 

(1.9) (I-T' ())+ n 2Tm(X) = , m = 0,1, ...; 

they form a complete orthogonal basis in the Hilbert space 

L2 (-1, 1) = {v: (-1, 1) -? R measurable such that v2(x)w(x) dx < +x} 

with the inner product (u, v)w = f' u(x)v(x)w(x) dx. We will denote by jjv Io,, = 

/(vv) the norm in L2 (-1, 1), and more generally by 

IV l~w = E 1 dkV ) 1/2 

the norm of the weighted Sobolev space HJ, (-1,1) of the functions whose distribu- 
tional derivatives up to order r are in L2 (-1, 1). 

2. Spectral Methods for a Helmholtz Equation. In this section we shall 
investigate different approximations of spectral type for the following boundary 
value problem: 

(2.1) ! sUXX + U = 0, - 1< x< 1, E> O. 

. U(-1) = 0, U(+1) = 1. 

The exact solution is U(x) = sinh((x+1)/v/F)/sinh(2/-/E), which exhibits a bound- 
ary layer of width 0(WfE) near x = 1 as E -? 0. 
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Problem (2.1) can be discretized spectrally using a Galerkin, or a tau, or a 
collocation procedure (see, e.g., [8], [3]). For each integer N > 0, the spectral 
solution is a polynomial of degree N satisfying the boundary conditions in (2.1), 
i.e, 

(2.2) u E PN, U(-1) = 0, u(+1) = 1 

and one of the following sets of equations: 
(A) Galerkin method 

(2.3) (-EuXX + u, V)) = 0 VV E PN; 

(B) Tau method 

(2.4) (-EuXX + u, V)W = 0 VV E PN-2; 

(C) Collocation method 

(2.5) E-UXX + U) (Xj) = O. j = N, ., N1, 

where 

(2.6) Xj = cos N 

are the knots of the Gauss-Lobatto quadrature rule for the Chebyshev weight w. 
For all fixed ? > 0, each of the above approximations is stable and convergent 

as N -- oo (see [3, Chapter 10]). The rate of convergence is exponential in N since 
the solution of (2.1) is analytic. 

2.1. Sign Properties of the Chebyshev Coefficients of u. We are interested in 
deriving estimates on the spectral solutions which hold uniformly as E -> 0. To 
this end, let us first investigate for each of the above approximations the structure 
of the error equation, i.e., the differential equation satisfied exactly by the spectral 
solution. 

THEOREM 2.1. Let u be defined by (2.2) and one of the relations (2.3)-(2.5). 
Then u satisfies the error equation 

(2.7) -euxx + u = A(PN + A1N-1, -1< x < 1 

for suitable constants A, k E R and polynomials eJ?, (depending upon the method) 
such that 

deg~ 4= n, 

(2.8) parity of I?n = parity of n, 

((Dn)k > Oi 0 < k < n. 
Proof. Let us set Lu = -Euxx + u. Lu is a polynomial of degree N which 

can be expanded according to a basis in PN. For the Galerkin method (2.3) it is 
convenient to use the basis defined by 

(2.9) on = T.+, I n = 0..., N. 

On the other hand, a basis for PN is given by 

(2.10) A' = (1-X2)T/_+1, l = 0,... ,N-2. 
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The two bases satisfy the orthogonality relation 

(4 X )W =f 1- x2T' + 1 T/+dx =- ( x T+1) Tl+1 dx 

--(n + 1)2 f Tn IT + 1 2dx =-2 (n + 1)26n~,. 

Here we have used Eq. (1.9). Then (2.7) follows from (2.3), and (2.8) is an im- 
mediate consequence of the definition (2.9), taking into account (1.6). For the tau 
method (2.4), the natural basis for PN is the Chebyshev basis 

(2.11) 4n = Tn, 

so that both (2.7) and (2.8) are straightforward. Finally, consider the collocation 
method (2.5). Since both Lu and TN vanish at the interior nodes x;, j=,.... 
N - 1, one has 

Lu = (Ax + 1)TN. 

Hence, (2.7) holds if we set 

(2.12) PN = XTN, (DN-1 = TNk 

In order to conclude, we have to check that the Chebyshev coefficients of J?N are 
nonnegative. By (1.6) one has 

N-1 

x TN = E bkxTk 
k=O 

where bk > 0. The third property in (2.8) therefore follows from the identities 
xTo = T1 and xTk = cos cos kO = 2 (Tk+l + Tk-l) for k > 1 (O = arccosx). 5 

The information on the sign of the Chebyshev coefficients of the error polyno- 
mials 4Jn (n = N, N - 1) can be used to infer the positivity of the Chebyshev 
coefficients of the spectral solutions. 

THEOREM 2.2. Let u = mNO fimTm be the Chebyshev expansion of u. Then 

(2.13) im >0, m0 = O. . . ., N. 

Proof. First note that for a given polynomial '1 E PN, there exists a unique 
polynomial v E PN such that 

(2.14) -evX + v=J 

The Chebyshev coefficients of v are recursively defined by the relations 

(2.15) -IVM$) +bm = mX m = N) N-1, .. ., .0 

i.e., recalling (1.8), 
11 1 

(2.16) m = Am + E k(k2-m2), m = N N-1,.. ., 0. 
cm 

k>m+2 
kxm 

This relation shows that the v'm's are nonnegative if the 4?m's are. Let us now 
define v E PN by the identity 

(2.17) -EVxx + V = 4ONE 
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One has by (2.8) and (2.16), 

(2.18) {m > 0 if m x N, 
im = 0 otherwise. 

Similarly, if we define w E PN by 

(2.19) -Ewxx + w = (DN-1 

we have 

(2.20) Wm=0 ifmixzN, 
Wm > 0 otherwise. 

By (2.7), the spectral solution u can be represented as 

(2.21) u = Av + ,uw, 

where A and ,u are obtained by imposing the boundary conditions. Specifically, one 
has 

IA (E k)+ 7 EW) = 1, 

(2.22) J k~k)?NkD~cN)=1 

I 
( 

- 

kXcN kDCN 

whence 

A > 2 E k] > 0, 

(2.23) [ N -1 

p 2 E ibk > 0. 

We conclude that 

(2.24) i A ifm N 
rn> 

m if m *N, 

proving the theorem. El 
Remark 2.1. The above proof contains a constructive procedure for computing 

the spectral solution of the boundary value problem (2.1). If the coefficients bm 
and Zim are computed by obvious recurrence relations, the method requires O(N) 
operations. a 

The result stated in Theorem 2.2 can be regarded as a "maximum principle" in 
the frequency space for the spectral approximations of the boundary value problem 
(2.1). Unlike the exact solution, which is strictly positive in the open interval (-1, 1) 
for all E > 0, the spectral solution is not bounded from below by 0 if E is small 
enough compared to N-'. A Gibbs phenomenon at x = 1 produces oscillations 
around the x-axis. However, the lack of positivity of u in the physical space is 
compensated for by the strict positivity of u in the frequency space, in the sense of 
(2.13). In turn, this property can be used to derive information independent of E 
on the behavior of u in the physical space. The following theorem is an example. 
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THEOREM 2.3. For all E > 0 and all N > 0 the following bound holds: 

(2.25) Iu(x)I < 1, -1 < X < 1. 

Moreover, 

(2.26) Iu(x)I = 1 if and only if x = 1. 

Proof. One has 
N 

Iu()I = ZE mTm(X) 
m=O 
N 

< E fm ITm () Iby (2.13) 
m=O 

N N 

< E fim = E fmTm(1) = u(1) =1. 
m=O m=O 

If lu(x)l = 1 then x :A-1 and ITm(x)I = 1 for all m, hence x = 1. 5 

2.2. Asymptotic Behavior of u as E -- 0, N -x oc. In this subsection we study 
the behavior of the error between the spectral solution u and the exact solution U 
of (2.1), when both N -x oc and E -f 0. The question is: How small can E be 
(compared to N-1) in order that the error vanish in a suitable LP-norm? 

First, let us briefly review the information given by the energy method, in the 
simplest case of the Galerkin scheme (2.3). 

THEOREM 2.4. The following estimates hold: 

EI - UX12,W < C {N2 + s> }' 
(2.27) 

11 ll-uII { + }2} 

Proof. Recall ([4]) that the bilinear form 

a(u, v) =-| fuXvw dx 

is continuous and coercive over H1,0(-1, 1) = Hw (-1, 1) n Ho' (-1, 1), i.e., there 
exist strictly positive constants af and a such that 

f V a) > oeIJU112 Vu E Hl ,o -1, 1), 

| la(u, v) I<plu I I,,w Iv I1 I Fu, vE H,,o(- 1, 1) 

Then the well-known error estimate for the Galerkin method (see, e.g., [6]) reads 
as follows: 

EIIU - UX11 W + 11U - U112 

<- inf IIUx - x IIO2,w + II -'IIUw} 
(2.28) O~c~~IEPN 
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where U = U - (x + 1)/2. It has been proven in [12] that there exists ' E PN such 
that 

JJlx -q: TxJo,w + N||(U- T11o,c, < CN-'11011~2,w- 

Since 110112,, 
- O(E-1), we obtain from (2.28) 

EIIUX- UjII'W + IIU- Uii2,?c < C N + 'j } 

The estimates in the L2-norm can be improved using the Aubin-Nitsche argument 
(see, e.g., [6, Theorem 3.2.4]). 0 

The theorem implies that the error u - U vanishes in the L2-norm if eN2 -x 00 

as N -x oc. However, this is not the best condition guaranteeing convergence. 
A sharper analysis can be carried out using the results derived in the previous 
subsections. The theorems we will prove are as follows: 

THEOREM 2.5. Let u be the spectral approximation of problem (2.1) produced 
either by the Galerkin method (2.3) or by the collocation method (2.5). There exist 
constants c1 and C2 independent of E and N such that 

Hu - ulloow < cimm (Nf/2' MN+1/2)' 

IIU - UIILo(-1,1) < C2 min (1, N4) 

It follows that u - U vanishes in the L2-norm, as N -* ox, no matter how small 
E is, and in the maximum norm provided eN4 4- oo as N -* 00. 

THEOREM 2.6. Let u be the spectral approximation of problem (2.1) produced 
by the tau method (2.4). There exists a constant C independent of E and N such 
that 

IIU - UIILO(-1,1) < N4 

The L2-norm of u - U has the same asymptotic behavior. 

Proof of Theorem 2.5. The error z = u - U satisfies by (2.1) and (2.7) the 
following boundary value problem: 

(2.29) - Ezxx+z+ = A4DN + /0N- 1, - < X < 1, 
Z(1) = Z(-1) = O. 

If we multiply by z and integrate over (-1, 1) with respect to the Chebyshev weight 
w we obtain 

(2.30) A`IIzXIo,w + JIzIJo,w ? C{ JA IV?NIIOw + I'1 I14N-1IIO0,w} 

Multiplying, instead, by IzIp-2z (1 < p < +0) and integrating over (-1,1), we get 
the estimate 

(P-1)Ef IZIP-2Z2 dx + (f IzIPdx) < (f IMN +IJ4)N lI|dz) 

Letting p -x oo, we obtain 
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Since the L.- or LOO-norms of 1N and "DN-1 can be easily estimated in terms of 

N, we only have to investigate the behavior of A and ,u, which are given by the 

formula (2.23), as functions of E and N. 

In the Galerkin method, 1N and bN-1 are given by (2.9). Using (1.6) we 

have IIT.' lo,w - 0(n3/2), while (see, e.g., [8, Formula A.5]) max-1<,<1 IT, (x)l = 

T,'(1) = n2. In order to derive an estimate for A, let us consider (2.16) for m x: N. 

We have ?m > (4N)m = 2N/Cm, which in turn gives 

Vm > + 2 E k(k2-m2). 
Cm m k=m+2 

kDcN 

Summing up over the indices m x: N, it is easily seen that there exist constants 

c1 and c2 such that 

A- = 2 E vm > cN2 + C2N6. 

m DcN 

Hence, 

JAl 114N low < C/(cN1/2 + C2EN4+ 

while 

JAl ll4NiJLac <? C'/(Cl + c2eN4). 

A similar estimate can be derived for IJAN- 1 

In the collocation method, 1N and bN-1 are given by (2.12). The L2- and L?- 

norms of 1N behave asymptotically as the corresponding norms of TN+1, and the 

same is true for the Chebyshev coefficients of "N with respect to the coefficients of 

TN'+1 It follows that the estimates for the Galerkin method apply to this case as 

well. 0 

Proof of Theorem 2.6. Again we use (2.30) and (2.31). In this case, 1N = TN, 

bN-1 = TN-1, hence both their L2- and L??-norms are 0(1). By (2.16) we have 

im > (2E/cm)N(N2 -M2) for all m xc N, m < N. Hence, 

N2 - 2 

A-1 2 > Vm>4EN N >CeN4 

mDCN m cN m 

m<N 

for a suitable constant C > 0. A similar estimate holds for u-W. o 

Remark 2.2. The previous results can be considered optimal. Indeed, one can 

easily prove that, for the Galerkin method, A, u > CN-2 if eN4 < Co, where Co is a 

sufficiently small constant. In this case, IllU-UIILo(-11) is uniformly bounded away 

from zero. A similar behavior occurs for the tau and the collocation methods. El 

3. Spectral Methods for an Advection-Diffusion Equation. We discuss 

now spectral methods for the following boundary value problem: 

(3.1) - EUX + UX = 0, - 1 <x< 1, E> 0, 

t U(-1) = 0, U(1) =1. 

The exact solution is U(x) = (e(x+1)/2-1)/(e2/,E1). The boundary layer exhibited 

near x = 1 when E -* 0 now has a width of order O(E). The spectral approximation 

is defined again by (2.2) and a projection procedure. We consider here the two 
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following schemes: 
(A) Galerkin (collocation) method 

(3.2) (-Euar + ux, v)W = O VV E PN; 

(B) Tau method 

(3.3) (-Euar + ux, v) = O Vv E PN-2- 

Note that the Galerkin and the collocation method coincide for problem (3.1) since 
-Euxx + ux E PN-1 if u E PN and the collocation nodes (2.6) are the knots of a 
quadrature rule which is exact for polynomials of degree up to 2N - 1. 

3.1. Sign Properties of the Chebyshev Coefficients of u. By adapting the proof 
of Theorem 2.1 one has the following result. 

THEOREM 3. 1. Let u be defined by (2.2) and one of the relations (3.2) or (3.3). 
Then u satisfies the error equation 

(3.4) -Eum + Ux = PAN-1, 

where [ E R is a suitable constant and DN-1 satisfies (2.8) (more precisely, 
(N-1 = TN for the Galerkin method, (N-1 = TN-1 for the tau method). 

In order to analyze the Chebyshev expansion of u, let us define v as the unique 
polynomial of degree N - 1 such that 

(3.5) -evx + v = (DN-1 

LEMMA 3. 1. The Chebyshev coefficients of the polynomial v defined by (3.5) 
satisfy 

(3.6) m> O for m = 0,..., N-1. 

The proof of the lemma is similar to the proof of Theorem 2.2; hence, it will be 
omitted. 

Next let w = 6 tbmTm be the unique polynomial of degree N such that 

wX = v and fl w(x)(1 -2)-1/2 dx = 0. The spectral solution u can be expressed 
as 

(3.7) u(x) = A + uw(x), -1 < x < 1. 

By imposing the boundary conditions (2.2) one gets 

(3.8) P = 1 

2 Ek odd Wk 

k even k 

(3.9) A 1 k$O 
2 [ 

k odd Wk 

In order to discuss the behavior of the Chebyshev coefficients of u, we have to 
distinguish whether u is defined by a Galerkin (collocation) or a tau method. Let 
us consider the former case first. 

(A) Galerkin (collocation) method. We first present the most significant results 
of this section, then we sketch their proofs. 
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THEOREM 3.2. Let u = N4o uimTm be the solution of (2.2) and (3.2). Then 

(3.10) f2m>0 for m=1,...,N, 

and 

(3.11) u(x) < 1 for -1 < x < 1. 

When E is small compared to N-1, a sharper result can be given. More precisely, 
we assume that 

(3.12) E< CoN-2 as N -+oo 

for a suitable constant Co > 0. Note that when Co is small enough, the expansion 
does not resolve the boundary layer. 

THEOREM 3.3. Let u = EN itmTm be the solution of (2.2) and (3.2). As- 
sume that (3.12) holds for a constant Co small enough. 

(a) If N is odd, then 

(3.10)' ?im > 0 for m = 0.. ., N, 

hence lu(x)l < 1 for all x, lxi < 1. Moreover, 

(3.13) U 2 + 2TN as E - 0, E < N 2. 

(b) If N is even, then 

(3.10)"/ io < 0, 

ftm> 0 m=1,...,N. 

Moreover, if E << N-2 then Iitol UN - O(eN2)-1, hence u is not bounded from 
below independently of E. More precisely, 

(3.14) U io + iNTN as E O-.0 E < N 

Remark 3.1. The right-hand side of (3.14) is an even function. Since u has to sat- 
isfy the boundary conditions (2.2), the odd coefficients of u, though negligible with 
respect to fio and fiN, produce a nonnegligible contribution near the endpoints. E0 

Remark 3.2. For very small E the spectral solution corresponding to an odd N 
behaves better than the one produced by an even N of the same magnitude. From 
a practical point of view this means that for a given E the oscillations created by the 
boundary layer will be less pronounced if the discretization parameter N is chosen 
to be odd. Although this phenomenon may be related to the particular structure of 
the boundary layer problem considered in (3.1), the interesting implication in the 
previous analysis is that attention should be paid to the parity of the degree of the 
polynomials to be used in a spectral approximation of boundary layer problems. E 

Let us now sketch the proofs of the previous results. 
Proof of Theorem 3.2. By (3.5) and (1.6), the Chebyshev coefficients of v satisfy 

the recurrence relation 

( 3 .1 5) A = -E E Vk + 4b 
m, m =N -1,N - 2, . .. , 0, 

cm 
k>m+1 
k--cm 
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where the Chebyshev coefficients JDm Of (N-1 = TN are given by 

A {2N/cm if m Dc N, 

0 otherwise. 

On the other hand, the Chebyshev coefficients of w satisfy 

(3.17) 2NilN = VN-1, 

(3.18) 2mzZm = Cm-li'm- 1 - ?m+1i m = N - 1, ... 1. 

From (3.17) and (3.15) we obtain tbN = 1, while (3.18) and (3.15) give 

(3.19) Wm = mM m= 1, ... ,N - 1. 

Multiplying (3.15) by E we obtain 

WN=l, 

(3.20) Wm k mN m < N - 1, 
X cm cm 

k>m+1 
\ ~~kzcm 

where 
1 if m x N. 

(3.21) f1m ifm4N 'mN> 
0 otherwise. 

Thus, ?m > 0 for m = 1,-.. , N. Then , > 0 by (3.8), hence (3.10) follows from 
(3.7). The inequality (3.11) can be derived by the same argument as used in the 
proof of Theorem 2.3. 0 

Proof of Theorem 3.3. Let us first state two technical results. 

LEMMA 3.2. Assume that (3.12) holds. If Co is small enough, there exist two 
constants cl and C2 independent of E and N such that 

(3.22) C1 < E Wm < C2, 

m DON 

(3.23) c1EN2 < E Wm?< C2eN2. 

mDlcN 

LEMMA 3.3. Under the hypothesis of the previous lemma one has 

(3.24) Wm = O(EN), m * N, 

and 

(3.25) c(EN)2 m ? C2N3, m rN. m <N-2, 

for two constants c and C independent of e and N. 

The proofs of the two lemmas are based upon the identities (3.20). Since they 
are lengthy and quite technical, they will be omitted. The interested reader can 
find them in [1]. Now assume that N is odd. By Lemma 3.2, 

(3.26) Wm < E Wm provided Co is small enough, 
m even m odd 

hence, by (3.9), Uio = A > 0. Moreover, when E -+ 0 and e ?N2, one deduces 
from (3.7)-(3.9) and Lemma 3.3 that ui0, 'N - > while im - o(1), 1 < m < N - I. 
On the other hand, if N is even, (3.26) holds with the inequality sign reversed, 
hence ito = A < 0. We conclude the proof using again Lemma 3.3. 0 



SPECTRAL METHODS AND A MAXIMUM PRINCIPLE 627 

(B) Tau method. 

THEOREM 3.4. Let u = Z f-0itmTm be the solution of (2.2) and (3.3). If 
E2 > 1/(4(N - 2)(N - 1)), then (3.10) and (3.11) hold. 

THEOREM 3.5. Let u = Z$f-0iLmTm be the solution of (2.2) and (3.3). As- 
sume that (3.12) holds for a constant Co small enough. Then the Chebyshev coef- 
ficients of u have the following asymptotic behavior: 

(a) If N is even, then 

I < ftmO0(1), m :$ 0, N, N-2, 

(3.27) 0 < fN -O(EN)-, 

0 > iN-2 =O(EN)-11 

0 < io = O(EN2)-l. 

(b) If N is odd, then 

I > fm 0O(EN2), m :0 O. N-2, N, 

(3.28) 0 > iN = O(N), 

0 < UN-2 = O(N), 

0 < fio = 0(1). 

Thus, for both even and odd N, u is not bounded uniformly with respect to E, and it 
exhibits the asymptotic behavior 

(3.29) U - UNTN + fUN-2TN-2. 

Remark 3.3. By comparing (3.27) and (3.28) note that again the spectral solution 
exhibits a better behavior for odd N than for even N, in terms of the magnitude 
of the oscillations produced by the boundary layer. 0 

Proof of Theorem 3.4. For the tau method, (N-1 = TN-i. Thus by (3.15), 

f N-l = 1, 

(3.30) v m = - E AdHk, m < N -1. 
k>m+l 
kzcm 

Using again (3.17) and (3.18) one gets the following identities: 

WN =112N, 

(3.31) f Wy_2 = 4E (N - 2)(N -1)-1 
(3.31) { ~~~7N2 = -/N - 1 

rm = Enm Vm :$ N, N-2. 

Therefore, 7bm > 0 for 0 < m < N. whence the result follows. 0 
Proof of Theorem 3.5. The theorem is based on the two following technical 

results, whose proof can be found again in [1]. 

LEMMA 3.4. Assume that (3.12) holds. If Co is small enough, there exist two 
constants Ci and C2 independent of E and N such that 

(3.32) C1 < E: m < C2. 

m>,cN 
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LEMMA 3.5. Assume that (3.12) holds. If Co is small enough, there exists a 
constant C3 independent of E and N such that 

(3.33) E rm < C3. 
m<N-4 

Using Lemma 3.4 and (3.31) we obtain 

(3.34) C0E < E wm < C2E, 
mDcN 

while by Lemma 3.5 and (3.31) we obtain 

(3.35) E Wm 
1 

independently of E. 
rnmDON 

Using these relations, one can prove that g (defined by (3.8)) is strictly positive 
(resp., negative) if N is even (resp., odd). Thus, (3.27) and (3.28) easily follow 
from (3.31) and (3.34). The rest of the theorem is a direct consequence of these 
estimates. 0 

3.2. Asymptotic Behavior of u as N -* cc, E -O 0. As in Subsection 2.2, we look 
for conditions on E and N which guarantee that the error between u and the exact 
solution U of (3.1) vanishes in some LP-norm as E -+ 0 and N -+ oo. 

THEOREM 3.6. Let u be the solution of (2.2) and either the Galerkin (colloca- 
tion) method (3.2) or the tau method (3.3). If EN2 -x cc as N -+ oo and E -* 0 in 

such a way that eN2 = N' for a suitable a > 0, then 

(3.36) 11U - UIILO(-1,1) = O(N-5) for every s > 0. 

Proof. By (3.4), the error z = u - U is the solution of the boundary value 
problem 

(3.37) { 
Zxx +Zx ADN- 1, (3 37) { 

~~~~z(-1) = z(l) 0. 

Let us split the data WNIN-1 --f into f = f + f, where fJ f(x) dx = 0 and 

f E R. Correspondingly, we split z into z = i + 2. Integrating the identity 
-Ez2S + ix = f over (-1,1) yields Zx(-1) = zix(1). Multiplying the same identity 
by i and integrating over (-1, 1) we obtain jZPx!L2(j1 1) < !!fj!L2(-1,1). On the 
other hand, by direct computation, (x) = fE[x + coth -e/esinh ?]. We conclude 
that 

(3.38) IIZIILOO(-1,1) < CI/I IJIjNIIL2(_1,1) 
for a constant C independent of E and N. 

We now give an estimate of the right-hand side of (3.38) for the two spectral 
methods considered in this section. For the Galerkin method, 

IkIN-1IIL2(_1,1) < 11V'N-1IHOW, = IITN'|OW < CN3/2. 

Using (3.20) in a recursive way, one can prove (see [1] for the technical details) that 
for each integer p > 0 there exists a constant Cp > 0 such that 
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whence (3.36) follows. 
For the tau method, 1k1 N-1I1L2(-1,1) < 1. Using now (3.31) (see again [1]), one 

can prove that ,t satisfies an estimate of the form 

1p1 ' Cp N2(EN 2)-p 

for all p > 0, whence again (3.36) follows. 0 

Acknowledgment. The author wishes to thank the referee for suggesting many 
improvements in the form of this paper. 

Dipartimento di Matematica 
Universita di Parma 
Parma, Italy 

Istituto di Analisi Numerica del C.N.R. 
Corso Carlo Alberto, 5 
27100 Pavia, Italy 

1. C. CANUTO, Spectral Methods and a Maximum Principle, IAN-CNR Report n. 476, Pavia, 
Italy, 1986. 

2. C. CANUTO & D. FUNARO, "The Schwarz algorithm for spectral methods," SIAM J. Numer. 
Anal., v. 25, 1988, pp. 24-40. 

3. C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI & T. ZANG, Spectral Methods in Fluid 
Dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1987. 

4. C. CANUTO & A. QUARTERONI, "Spectral and pseudo-spectral methods for parabolic 
problems with nonperiodic boundary conditions," Calcolo, v. 18, 1981, pp. 197-217. 

5. C. CANUTO & G. SACCHI LANDRIANI, "Analysis of the Kleiser-Schumann method," Nu- 
mer. Math., v. 50, 1986, pp. 217-243. 

6. PH. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amster- 
dam, 1978. 

7. W. ECKHAUS, Singular Perturbations, North-Holland, Amsterdam, 1973. 
8. D. GOTTLIEB & S. A. ORSZAG, Numerical Analysis of Spectral Methods: Theory and Appli- 

cations, SIAM, Philadelphia, Pa., 1977. 
9. H. 0 KREISS & J. OLIGER, "Stability of the Fourier method," SIAM J. Numer. Anal., v. 

16, 1979, pp. 421-433. 
10. J. L. LIONS, Perturbations Singulieres dans les Problemes aux Limites et en Contr6le Optimal, 

Lecture Notes in Math., Vol. 323, Springer-Verlag, Berlin, 1973. 
11. A. MAJDA, J. McDONOUGH & S. OSHER, "The Fourier method for nonsmooth initial 

data," Math. Comp., v. 32, 1978, pp. 1041-1081. 
12 Y. MADAY & A. QUARTERONI, "Legendre and Chebyshev spectral approximations of 

Burgers' equation," Numer. Math., v. 37, 1981, pp. 321-332. 
13. S. A. ORSZAG & M. Y ISRAELI, "Numerical simulation of viscous incompressible flows," 

Ann. Rev. Fluid Mech., v. 6, 1974, pp. 281-318. 
14. R. G. VOIGT, D. GOTTLIEB & M. Y. HUSSAINI (Eds.), Spectral Methods for Partial Differ- 

ential Equations, SIAM, Philadelphia, Pa., 1984. 


